

Business from technology

Advanced earthquake modeling of highstrength steel frames

Vilho Jussila, <u>Ludovic Fülöp</u>

VTT Technical Research Centre of Finland

ludovic.fulop@vtt.fi

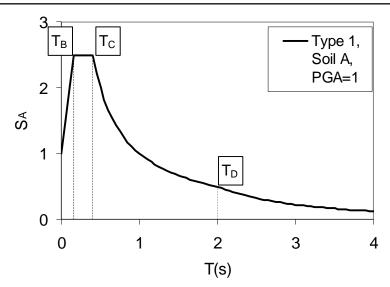
Outline

- The challenge.
- Design targets for ordinary buildings in strong earthquake.
- The design process. How design targets are followed.
- Advanced modeling techniques in the non-linear behavior range.
- Interpretation of the performance targets.
- Some result interpretation.

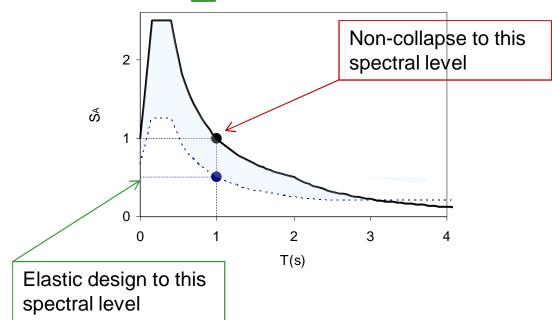
The challenge

- The wider acceptability of high-strength steel (HSS) in building structures for seismic applications is hindered by reservations about the available ductility:
 - of members
 - and especially of connections.
- Currently research efforts are being directed towards developing connection configurations for HSS with sufficient ductility supply (HSS_SERF/RFCS project – Universitatea "Politehnica" of Timisoara, RIVA Acciaio, VTT, University of Liege, Universität Stuttgart, University of Naples "Federico II" Italy, Univerza v Ljubljani, GIPAC, Rautaruukki, Consorzio Pisa Ricerche)
- Also to <u>qualify global behavior of selected frame typologies</u> to strong earthquake.

Definition of "goals" and "tools" in design codes


- At ultimate limit state (ULS) EN1998 aims at "no-collapse requirement". The structure shall withstand the design seismic actions (DSA) without local or global collapse and must retain structural integrity and a residual load bearing capacity. The primary aim is to save the lives of the occupants.
- DSA defined by a reference seismic action with probability of exceedence of 10 % in 50 years, or the reference return period of 475 years.
- However, in the basic case, even EN1998 provides the designer ways to calculate a structure supposing elastic behavior of the elements (i.e. elastic design like Response Spectrum Analysis).

Bridging the gap in EN1998 – The q factor


Elastic spectra - S_A:

$$S_{e}(T) = S_{A} = \begin{cases} a_{g} \cdot S \cdot \left[1 + \frac{T}{T_{B}} (2.5 \cdot \eta - 1)\right] & 0 \le T \le T_{B} \\ a_{g} \cdot S \cdot \eta \cdot 2.5 & T_{B} \le T \le T_{C} \\ a_{g} \cdot S \cdot \eta \cdot 2.5 \cdot \left[\frac{T_{C}}{T}\right] & T_{C} \le T \le T_{D} \\ a_{g} \cdot S \cdot \eta \cdot 2.5 \cdot \left[\frac{T_{C} \cdot T_{D}}{T^{2}}\right], & T_{D} \le T \end{cases}$$

Design spectra - S_d:

$$S_{d}(T) = \begin{cases} a_{g} \cdot S \cdot \left[\frac{2}{3} + \frac{T}{T_{B}} \cdot \left(\frac{2.5}{q} - \frac{2}{3} \right) \right] & 0 \le T \le T_{B} \\ a_{g} \cdot S \cdot \left[\frac{2.5}{q} \right] & T_{B} \le T \le T_{C} \\ a_{g} \cdot S \cdot \left[\frac{2.5}{q} \cdot \frac{T_{C}}{T} \right], > \beta \cdot a_{g} & T_{C} \le T \le T_{D} \\ a_{g} \cdot S \cdot \left[\frac{2.5}{q} \cdot \frac{T_{C} \cdot T_{D}}{T^{2}} \right], > \beta \cdot a_{g} & T_{D} \le T \end{cases}$$

CBF's according to Eurocode

Table 6.2: Upper limit of reference values of behaviour factors for systems regular in elevation

STRUCTURAL TYPE	Ductility Class	
	DCM	DCH
a) Moment resisting frames	4	$5\alpha_{\rm u}/\alpha_{\rm l}$
b) Frame with concentric bracings		
Diagonal bracings	4	4
V-bracings	2	2,5
c) Frame with eccentric bracings	4	$5\alpha_{\rm u}/\alpha_1$
d) Inverted pendulum	2	$2\alpha_{\rm u}/\alpha_{\rm l}$
e) Structures with concrete cores or concrete walls	See section 5	
f) Moment resisting frame with concentric bracing	4	$4\alpha_{\rm u}/\alpha_{\rm l}$
g) Moment resisting frames with infills Unconnected concrete or masonry infills, in contact with the frame	2	2
Connected reinforced concrete infills	See section 7	
Infills isolated from moment frame (see moment frames)	4	$5\alpha_{\rm u}/\alpha_{\rm l}$

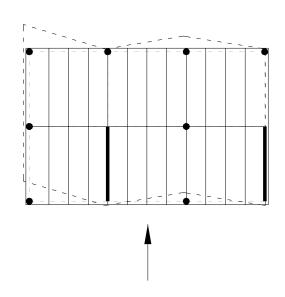
What happens between the elastic design level and DSA?!

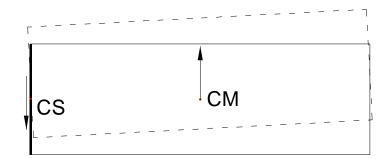
- Above the elastic load level, the structure will deviate from the elastic range of response. At DSA the structure is non-linear.
- The reserve up to "collapse" depends on the structure's <u>ability to accommodate</u>
 (1) in a stable way (2) non-linear deformations up to (3) DSA load levels.
- Regularity and ability to <u>undergo repeated plastic deformations</u>, without loosing capacity is a precondition of good earthquake performance.
- Difficult to satisfy, because the requirements are related to constructive and detailing conditions (usually backed by tests). <u>And here is where HSS is lacking</u> the empirical/testing background.

Design/Guiding principles

WHAT?

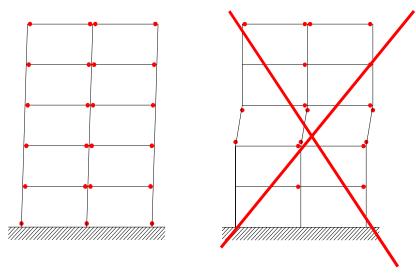
- 1. Structural simplicity
- 2. <u>Uniformity, symmetry</u>
- 3. Redundancy
- 4. <u>Diaphragm behavior at</u> floor level
- 5. <u>Bi-directional resistance</u> and stiffness
- 6. <u>Torsional resistance and</u> stiffness
- 7. Adequate foundation
- 8. Global collapse mechanism of vertical systems
- 9. <u>Ductility in dissipative</u> elements
- 10. <u>Strength in non-dissipative elements</u>

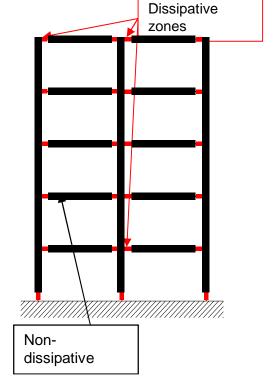

WHY?


- 1. To reduce uncertainty of modeling, analysis, dimensioning, detailing and construction
- 2. To reduce uncertainty
- 3. To have alternative load paths in case of local plasticization
- 4. To distribute floor loads evenly to vertical systems, to be able to exploit redundancy of the vertical systems
- 5. Because earthquake load in horizontal directions is identical
- 6. To separate response in the two directions (reduce uncertainty) and avoid loading external vertical frames excessively
- 7. Because_foundations transmit loads, for out of phase loading on foundations most analytical tools are invalid
- 8. To exploit redundancy within the vertical system, spread damage evenly (do not concentrate damage), maximally exploit energy dissipation
- Because elements deforming in non-ductile way fail right after yielding
- 10. To keep dissipative element stable while they deform

Global plastic collapse mechanism – role of slabs

- Regularity conditions in plan and elevation.
- Provisions for concrete diaphragms to play the role of a diaphragm:
 - (1) solid **reinforced concrete slab** considered a diaphragm;
 - (2) <u>cast-in-place topping on a precast floor</u> or roof system can be considered diaphragm in certain condition (concrete toping is strong & stiff enough).

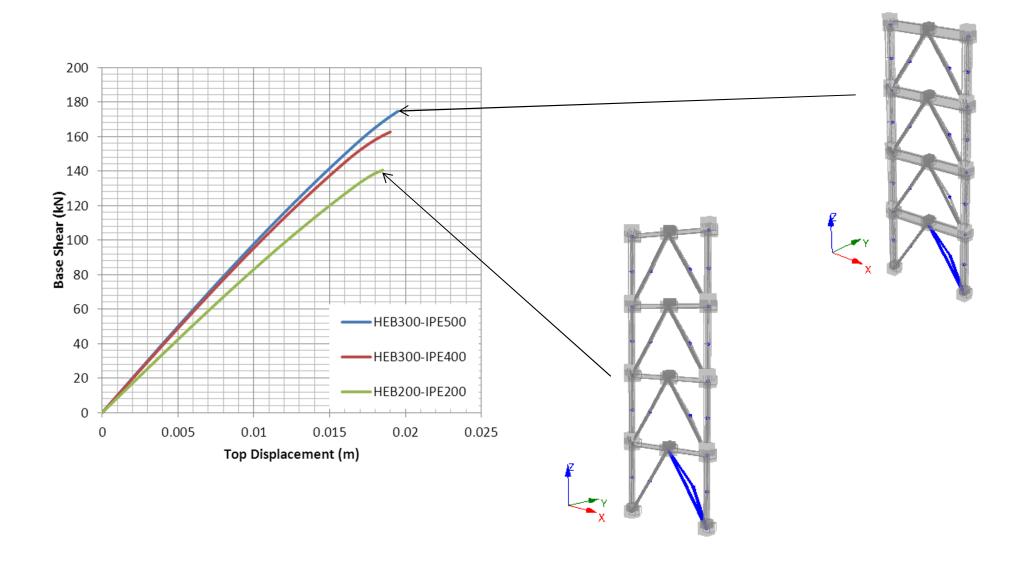

Global plastic collapse mechanism – vertical frames


- Promote global mechanism of vertical frames:
 - (1) the desired source of inelastic deformations e.g. <u>rotation in plastic hinges at beams-ends</u> (curvature ductility μ_{ϕ}) can be related to the displacement ductility factor (μ_{δ}) for the entire frame: $\mu_{\phi} = 2\mu_{\delta}$ -1

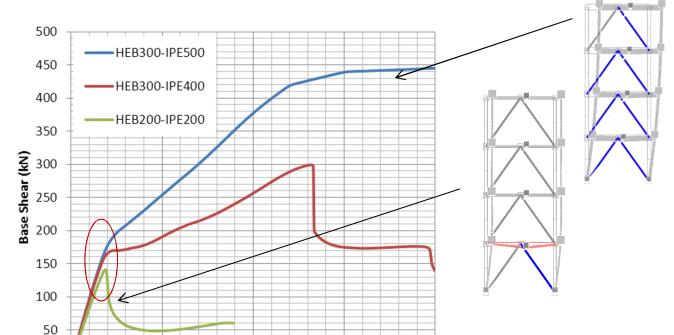
$$\mu_{\phi} = 2q_{\text{o}} - 1 \qquad \text{if } T_1 \ge T_{\text{C}}$$

and further to the q factor:

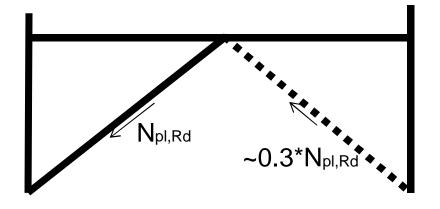
$$\mu_{\phi} = 1 + 2(q_{\text{o}} - 1)T_{\text{C}}/T_{\text{1}} \text{ if } T_{\text{1}} < T_{\text{C}}$$



• Detailing of dissipative zones need to supply curvature ductility/local ductility μ_{ϕ} ; overstrength rules need to be sufficient to concentrate plasticity in dissipative zones only.



Global plastic collapse mechanism – V braced frames (1)


Global plastic collapse mechanism – V braced frames(2)

0.15

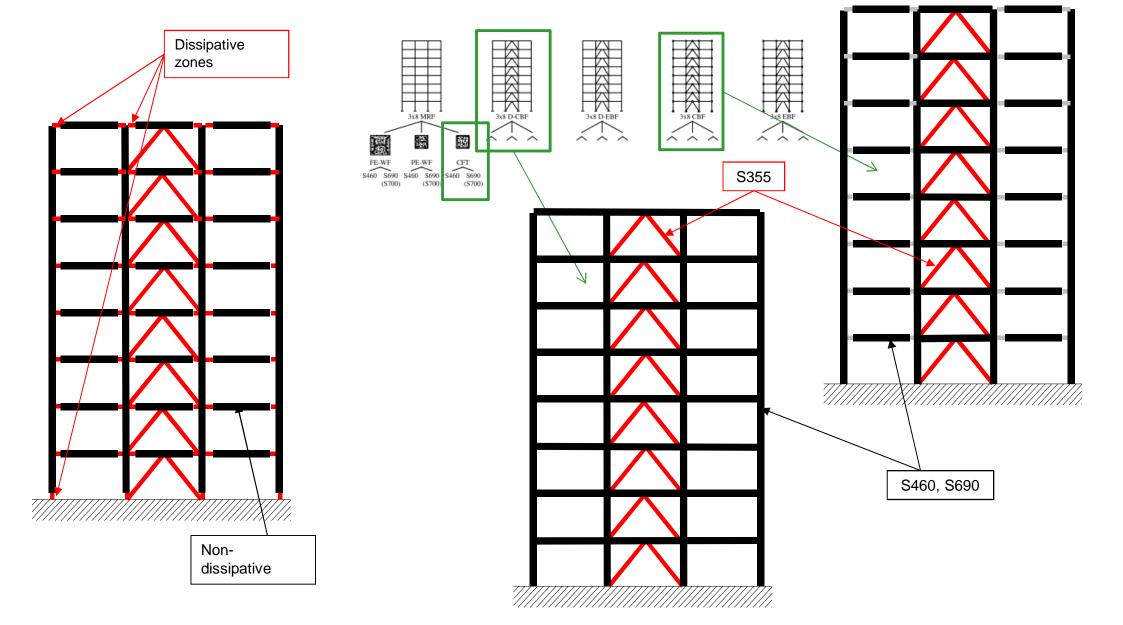
0.2

- (1) Not much difference in the elastic range – catch, designer calculations are in elastic only;
- (2) But huge difference in the inelastic range
- Clearly, only configurations with strong horizontal beams should be acceptable:

0.1

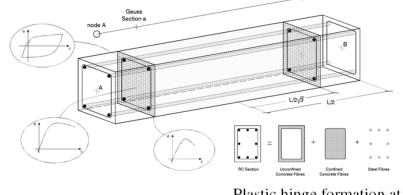
Top Displacement (m)

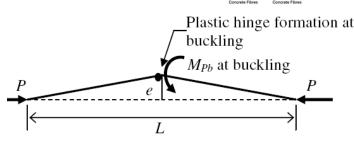
0.05


- Clearly, only configurations with strong horizontal beams should be acceptable – so EN1998-1 states:
 - the unbalanced vertical seismic action effect applied to the beam by the braces after buckling of the compression diagonal. This action effect is calculated using N_{pl,Rd} for the brace in tension and γ_{pb} N_{pl,Rd} for the brace in compression.

NOTE 1 The factor γ_{pb} is used for the estimation of the post buckling resistance of diagonals in compression.

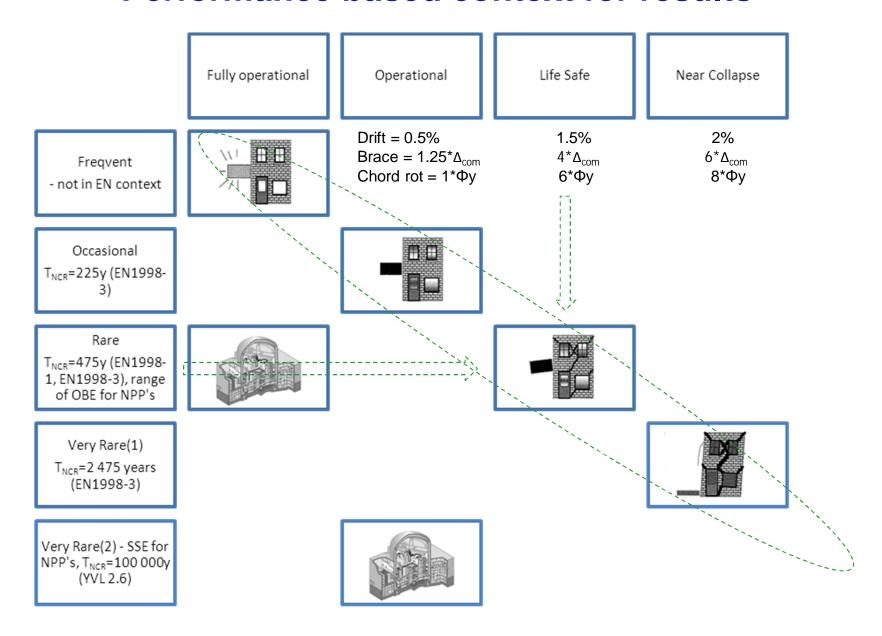
NOTE 2 The value ascribed to γ_{pb} for use in a country may be found in its National Annex to this document. The recommended value is 0,3.


RFCS project to study the posible use of HSS



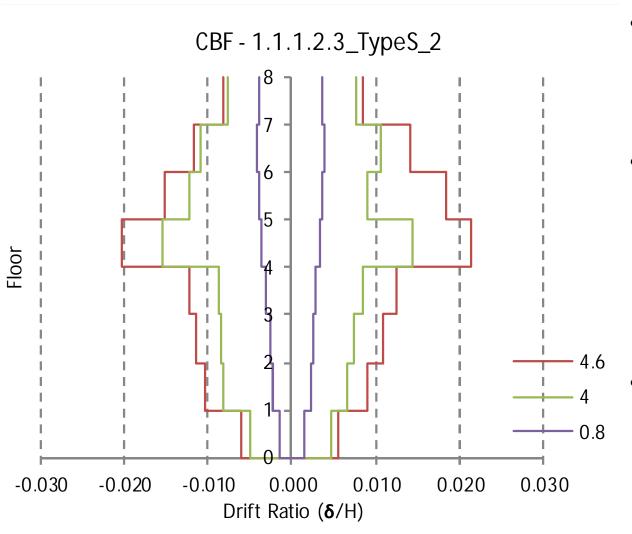
Particularities of the modeling

- Structures strictly designed to EN1998-1;
- Incremental dynamic analysis is used with 7 acceleration records selected to match the elastic spectra (EN1998-1);
- Material strength in the models correspond to mean strength
 (f_y=1.25*355=443N/mm², f_y=1.1*460=506N/mm²). Only this can lead to the formation of most likely collapse mechanism.
- Members modeled as fiber elements. Takes into account bending and axial loads, shear deformation and failure needs to be modeled separately;
- Buckling of braces modeled using geometric imperfections calibrated to reach buckling to EN1993-1.

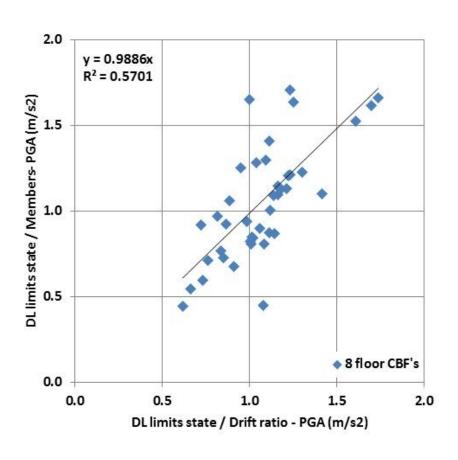


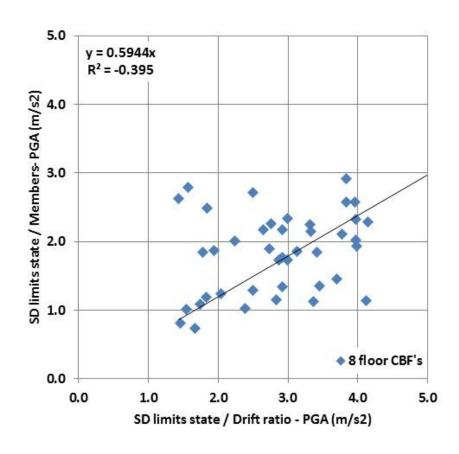
Result intrepretation

- Interpreted in the framework of performance design targets, as much as possible using Eurocodes:
 - Inter-story drift ratio based limits (FEMA);
 - Member deformation based limits (EN1998-1-3);
- Drift limits 0.5%, 1.5% and 2% for damage limitation/immediate occupancy limit state (DL/IO), significant damage/life safety (SD/LS) and near collapse/collapse prevention (NC/CP)
- Brace shortening $-1.25^*\Delta_{com}$, $4^*\Delta_{com}$, $6^*\Delta_{com}$ = EN1998-3, Table B.2;
- Beams/Columns: chord rotations corresponding to 1*Φy, 6*Φy, 8*Φy EN1998-3, Table B.1.;



Performance based context for results


Drift based results



- DL limit state is reached at acceleration 0.8m/s² = 0.25*PGA_{DSA}) by drift ratio in floor 7;
- At SD limit state (4m/s² = 1.27*PGA_{DSA}), governed by 5th floor drift, all floors except the ground floor has drifts suggesting presence of damage frame beams work in redistributing forces between floors;
- The 5th floor attracts significant damage in SD limit state due to the column change located in that floor;

Drift based limits compared to member based limits

Discussion

- Work is ongoing. Results are being centralized and interpreted for all configurations (CBF, DCB-F; EBF, DEB-F).
- Some preliminary conclusions on CBF and D-CBF:
 - The frames using HSS have comparable performance with traditional frames;
 - CBF and D-CBF frame behavior seem to be consistent with the design targets – braces control the performance, damage at SD limit state is spread in almost all floors;
 - The weakening of columns in floor 5 does attract a damage concentration. Maybe section change is too steep?! (Go back to check the design.)
 - Member (Brace) based performance limits is not consistent with Drift based limits – the brace criteria in EN1993-3 is stricter. (Can not dispute it based on result from this project.)

VTT creates business from technology