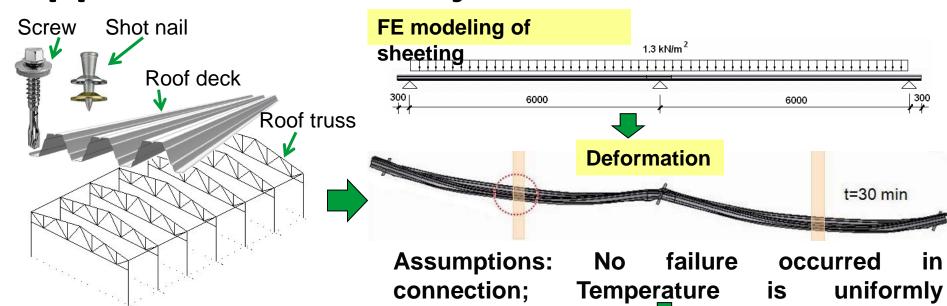
FIRE DESIGN METHOD FOR COLD-FORMED STEEL SHEETING SYSTEM

W. Lu and J. Puttonen

Department of Civil and Structural Engineering School of Engineering Aalto University

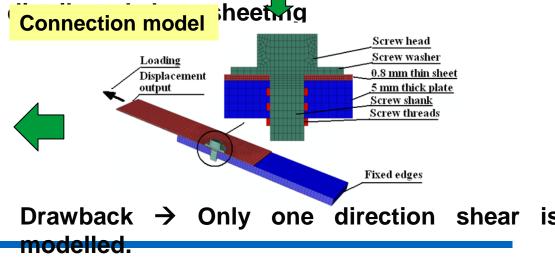
J. Outinen

Research Manager Ruukki Construction Oy

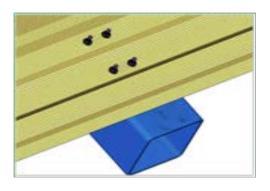

Z. Ma

Z.Ma Researching and Consulting

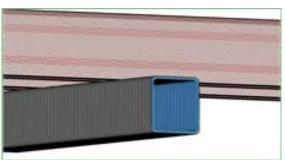
CONTENTS


- Backgroud application and objectives
- Temperature distribution near joint
 - Geometrical model and fire protection
 - Thermal material properties and thermal loads
 - Results and comparisons
- Sheeting systems with detailed connections
 - Geometrical model and FE meshes
 - Material properties
 - Results and comparisons
- Conclusions and future researches

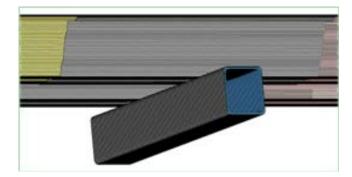
Applications and objectives


Objective of this research:

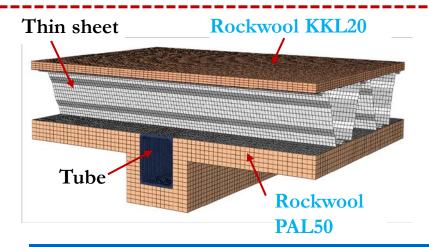
- Temperature distribution near joint with or without fire protections
- Behaviour of sheeting system when connector is modelled

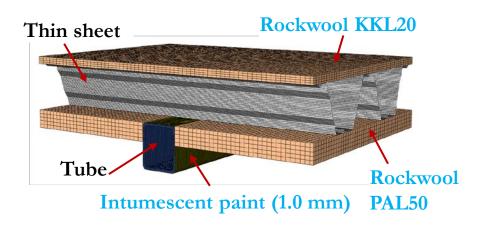


Geometrical model with fire protections



Connection details



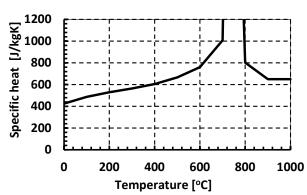

Only tube protected

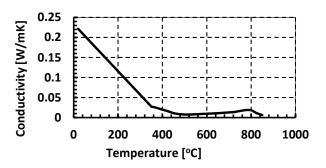

intumescent paint
(1 mm)

Both tube and sheeting (500 mm) protected → intumescent paint (1 mm)

FE models

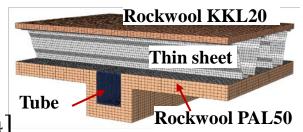

Cases	Fire Protections			Quitnut	Fire model
	Tube	Sheeting	Nail	Output	Fire model
Case A	no	no	no	Nail	ISO fire
Case B	ITUPaint	no	no	Steel sheeting	
Case C	ITUPaint	ITUPaint	no	-	
Case D	RW	ITUPaint	no		
Case E	RW	RW	no		


- ABAQUS / Standard
- Diffusive heat transfer elements, which allow for the heat storage (specific heat and latent effects)
 - Steel sheeting \Rightarrow shell elements DS4
 - Tubular chord \Rightarrow solid elements DC3D8
 - Nails \Rightarrow solid elements DC3D8.
 - O Intumescent paint ⇒ solid elements DC3D8 (3 layers in 1 mm thickness)
 - Rockwool panels ⇒solid elements DC3D8


Thermal material properties

Steel → EN 1993-1-2

Intumecent paint



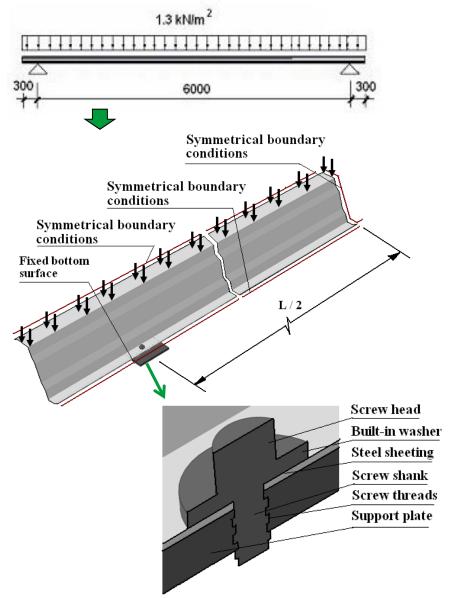
- Thermal properties of Rockwool
 - Thermal conducitivity for Rockwool 0.045 W/mK
 - O Density for Rookwool: PAL50 \rightarrow 155 kg/m³ for KKL20 \rightarrow 235 kg/m³
- Intumecent paint
 - Thickness of intumescent paint is assumed to be constant
 - o Equivalent thermal conductivity is varied with time

Thermal load

Heat flux through exposed surface

$$q = \alpha_c \cdot (T_g - T_s) + \sigma \cdot \varepsilon \cdot \left[(T_g + 273)^4 - (T_s + 273)^4 \right]$$

- Convection in ABAQUS using keyword *SFILM with Film properties
 - 25 W/mK \rightarrow exposed surfaces to hot gas
 - 8 W/mK → upper surface exposed to ambient temperature
- Radiation →*SRADIATE with emissivity of 0.6 for both steel and protection
- Cavity radiation
 - Inner surfaces of tube
 - Surface between rockwool panel and folds of sheeting
- Approximate cavity radiation approach in ABAQUS, assuming
 - Equal view factors and constant emissivity in the cavity surfaces (0.3)
 - Full thin coat with high conductivity is modeled
- Contact conductance
 - Steel to steel \rightarrow 2000 W/m²K
 - Rockwool to steel \rightarrow 200 W/m²K

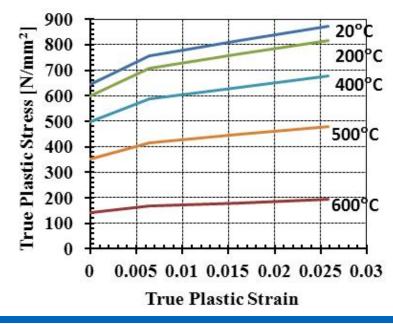

Comparisons of temperatures at 30 min

CASES	Sheet [°C] (top)	Sheet [°C] (bottom)	Tube [°C]	Nail-shank [°C]	
No protection (A)	565	831	720	710	
Tube ITU, sheet no (B)	470	831	475	565	
Tube ITU, sheet ITU (C)	340	450	475	460	
Tube ITU, sheet RW (D)Steel sheeting tempera	45 ature	-	390	385	
Both Affected by prote		sheeting	51	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
 Top or bottom sheeting 					

- Steel tube temperature \rightarrow affected by protection on it
- More effective → Rockwool
- Location of nails
- Nail temperature \rightarrow affected by the tube protection

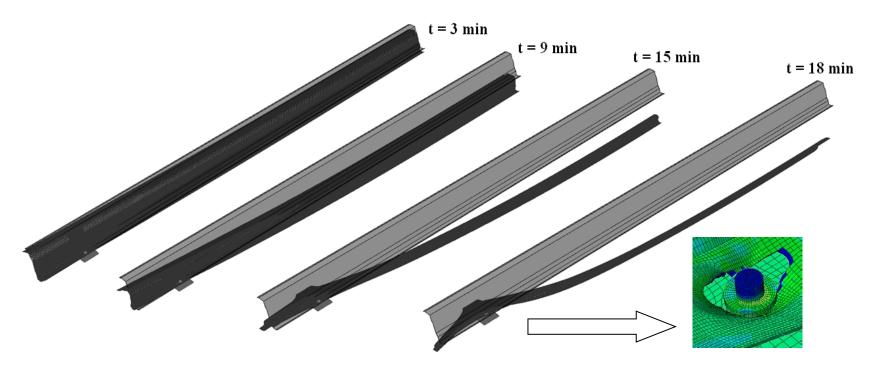
FE model


- Geometrical model
 - Single span (L = 6 m) with uniform load
 - o Steel sheeting R120, t=0.8mm
 - **O** Screw **φ**5.5
 - Connected to thick plate (5 mm)
 - Bottom surface of thick plate is fixed
- Two step loading process:
 - Mechanical loading →1.3kN/m²
 - Temperature increase → ISO fire
- ABAQUS / Explicit
- Symmetrical properties
 - o Profile
 - o Half span
- Geometrical nonlinearity and material non-linearity
- Solid elements → C3D8R for all parts
- General contacts

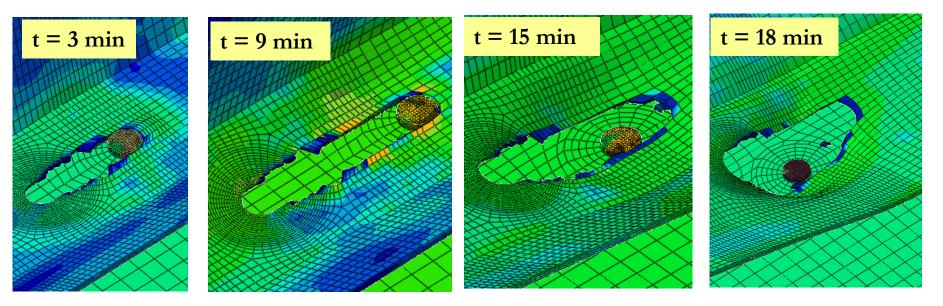

Material properties

	Sheeting	Support	Connector
Steel grades	S350	S355	8.8
Damage initiation	0.45 true strain	No	No

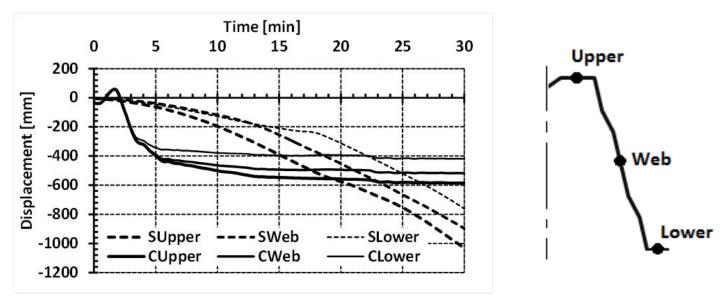
True stress – true strain curve for S350 with damage model



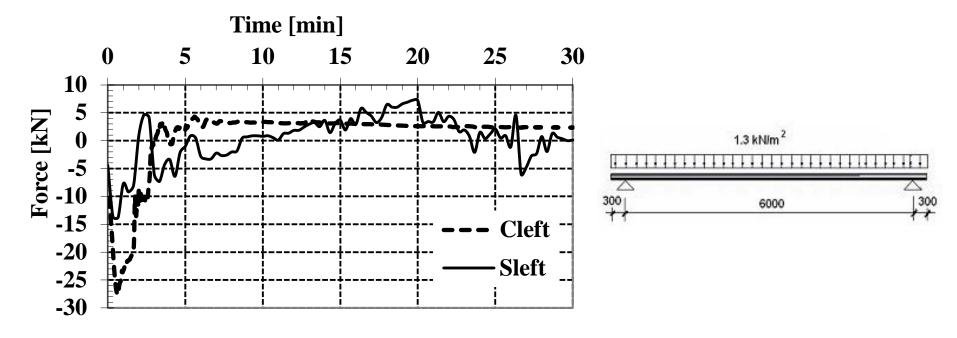
True stress – true strain curve for bolt 8.8



Deformation histories


- $t = 9 \text{ min } \rightarrow \text{top flange deformed more than web and lower flange}$
- $t = 15 \text{ min } \rightarrow \text{ profiled cross-section collapsed at support}$
- $t = 18 \text{ min } \rightarrow \text{ profiled cross-section collapsed in mid span}$
- Pull through failure of sheeting has been observed

Local deformation at joint


- $t = 3 \text{ min } \rightarrow \text{bearing failure of sheeting}$
- $t = 9 \text{ min } \rightarrow \text{ bearing force start to change direction}$
- $t = 15 \text{ min } \rightarrow \text{ sheeting in the process of catenary action}$
- $t = 18 \text{ min } \rightarrow \text{ profiled cross-section changed to simple sheet}$
- Uplift force → pull through failure of sheeting observed

Displacement - time curves

- Solid lines \rightarrow FE model with connector elements
- Dotted lines → FE model with screw being modelled
- Buckling of sheeting → earlier for model with connector element
- Rigidity → more rigid of joint → higher compressive load
- Pull through failure → FE model with screw being modelled

Variation of reaction force at left support

- Solid lines → FE model with screw being modelled
- Dotted lines \rightarrow FE model with connector elements
- Stiffness of joint \rightarrow higher compressive force developed
- Compression to tension → gradually or suddenly

Conclusions

- Rockwool protection is more efficient than ITUPaint (1mm thickness)
 - Thickness of ITUPaint need to be improved in order to get same efficiency
- 3D FE sheeting system model including the actual screw dimensions
 - Current model captures main behaviour up to 20 minutes
- Comparing to FE model with connector elements
 - Current model showed a reduced maximum compressive force developed from restrained thermal elongation
 - A delayed buckling of steel sheeting
 - Benefit for both steel sheeting and joint
- Future researches
 - Improvements for FE model
 - Integrate temperatures distribution at joint into FE model of sheetii